MAD2B contributes to podocyte injury of diabetic nephropathy via inducing cyclin B1 and Skp2 accumulation.

نویسندگان

  • Hua Su
  • Qiang Wan
  • Xiu-Juan Tian
  • Fang-Fang He
  • Pan Gao
  • Hui Tang
  • Chen Ye
  • Di Fan
  • Shan Chen
  • Yu-Mei Wang
  • Xian-Fang Meng
  • Chun Zhang
چکیده

It is well documented that mitotic arrest deficiency (MAD)2B can inhibit the anaphase-promoting complex/cyclosome (APC/C) via cadherin (Cdh)1 and, consequently, can destroy the effective mitotic spindle checkpoint control. Podocytes have been observed to rapidly detach and die when being forced to bypass cell cycle checkpoints. However, the role of MAD2B, a cell cycle regulator, in podocyte impairment of diabetic nephropathy (DN) is unclear. In the present study, we investigated the significance of MAD2B in the pathogenesis of DN in patients, an animal model, and in vitro podocyte cultures. By Western blot and immunohistochemistry analyses, we found that MAD2B was evidently upregulated under high glucose milieu in vivo and in vitro, whereas Cdh1 was inhibited with high glucose exposure. Overexpression of MAD2B in podocytes by plasmid DNA transfection suppressed expression of Cdh1 and triggered the accumulation of cyclin B1 and S phase kinase-associated protein (Skp)2, two key molecules involving in cell cycle regulation, and the subsequent podocyte insult. In contrast, MAD2B deletion alleviated the high glucose-induced reduction of Cdh1 as well as the elevation of cyclin B1 and Skp2, which rescued the podocyte from damage. Taken together, our data demonstrate that MAD2B may play an important role in high glucose-mediated podocyte injury of DN via modulation of Cdh1, cyclin B1, and Skp2 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection of neurons from high glucose-induced injury by deletion of MAD2B

Diabetic encephalopathy may lead to cognitive deficits in diabetic patients and diminish quality of life. It has been shown that protracted hyperglycaemia is directly associated with neuronal apoptosis, which is involved in diabetic encephalopathy. The anaphase-promoting complex (APC) is essential for the survival of post-mitotic neurons. In our previous study, we found that the mitotic arrest ...

متن کامل

The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2−/− p27−/− Mice

SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injur...

متن کامل

MDM2 is implicated in high‐glucose‐induced podocyte mitotic catastrophe via Notch1 signalling

Podocyte injury and depletion are essential events involved in the pathogenesis of diabetic nephropathy (DN). As a terminally differentiated cell, podocyte is restricted in 'post-mitosis' state and unable to regenerate. Re-entering mitotic phase will cause podocyte disastrous death which is defined as mitotic catastrophe (MC). Murine double minute 2 (MDM2), a cell cycle regulator, is widely exp...

متن کامل

Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

BACKGROUND/AIMS Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neur...

متن کامل

HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy

Histone deacetylases (HDACs) have been implicated in the pathogenesis of kidney diseases including diabetic nephropathy (DN); however, the mechanism is poorly understood. Wang et al. unravel the changes in expression of various HDACs in DN and demonstrate that HDAC4 specifically contributes to podocyte injury in DN. HDAC4 deacetylates STAT1 to suppress autophagy, an essential cellular process f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 308 7  شماره 

صفحات  -

تاریخ انتشار 2015